2. State of Equalizer Design for CHANNEL Distortion 
2.1. Overview
In this chapter channel characteristics and state of problem of equalizer design have been considered. Different types of equalizers for equalization of channel distortion are considered. The description of adaptive equalizer for equalization of nonlinear channel is presented. Also the structure of adaptive equalization system is described.

2.2 Channel Characteristics

A communications channel may be described in terms of its characteristic properties. These channel characteristics include bandwidth (how much information can be conveyed across the channel in a unit of time, commonly expressed in bits per second or bps), quality (how reliably can the information be correctly conveyed across the channel, commonly in terms of bit error rate or BER) and whether the channel is dedicated (to a single source) or shared (by multiple sources). 

Obviously a higher bandwidth is usually a good thing in a channel because it allows more information to be conveyed per unit of time. High bandwidths mean that more users can share the channel, depending on their means of accessing it. High bandwidths also allow more demanding applications (such as graphics) to be supported for each user of the channel. 

The capability of a channel to be shared depends of course on the medium used. A shared channel could be likened to a school classroom, where multiple students might attempt to simultaneously catch the teacher's attention by raising their hand; the teacher must then arbitrate between these conflicting requests, allowing only one student to speak at a time. 

Reliability of communication is obviously important. A low quality channel is prone to distorting the messages it conveys; a high quality channel preserves the integrity of the messages it conveys. Depending on the quality of the channel in use between communicating entities, the probability of the destination correctly receiving the message from the source might be either very high or very low. If the message is received incorrectly it needs to be retransmitted. 

If the probability of receiving a message correctly across a channel is too low, the system (source, channel, message, destination) must include mechanisms which overcome the errors introduced by the low quality channel. Otherwise no useful communication is possible over that channel. These mechanisms are embodied in the communication protocols employed by the corresponding entities. 

The effective bandwidth describes what an application experiences and depends on the quality of service (QOS) provided by the channel. For example, modems scale back their transmission speed based largely on their perception of channel quality in order to optimally use the transmission medium. 

In general, shared and reliable channels are more resource efficient than those which enjoy neither of these characteristics. Shared channels enjoy greater efficiency than dedicated ones because most data communication is burst in nature, with long idle periods punctuated by brief message transmissions. Reliable channels are more efficient than unreliable ones because retransmissions are not required as often (because there are fewer transmission-induced errors).

2.2.1 Linear Channel

Since Wiener’s classical work on adaptive filters, the mean-square-error (MSE) criterion has been the workhorse of function approximation and optimal filtering. It has especially become popular due to the analytical simplicities it introduces when employed to FIR filtering.

Also know that a system trained with the entropy criterion minimizes an information theoretic distance measure between the probability density functions (PDF) of the desired and the actual outputs. The entropy criterion was applied to a variety of problems including chaotic time series prediction and channel equalization with successful results.

The use of large constellations provides bandwidth efficient modulation. Quadrate amplitude modulation (QAM) type modulation techniques have constellations, in which signal points are uniformly spread. Information is carried by both signal amplitude and phase; hence they are not constant envelopes. Thus, efficient nonlinear power amplifiers cannot be utilized in the transmitter, without equalization in the receiver. The use of nonlinear amplifier results in a nonlinear channel. A variety of approaches employing the MSE criterion have been taken towards solving this nonlinear channel equalization problem. A classical approach suggested by Falconer assumes knowledge of the parametric channel model, and tries to adaptively equalize the nonlinear channel by suitably chosen equalizer architecture.
Decision-feedback is also applied to improve performance. Recently, the use of neural networks for channel equalization has become popular where several neural network topologies are compared in terms of both performance and complexity. The idea of using multilayer perceptions (MLP) has existed in the literature with successful examples of improved performance over linear equalizers. In contrast to the above approaches where MSE is adopted as the optimality criterion, the minimum error entropy criterion is utilized in the training process. This choice of optimality criterion is motivated by the improved performance of the neural networks in various applications when compared to the MSE criterion, in the case when the network topology is not sufficient to achieve small error values in training [2, 3, and 4]. 
2.2.2 Non Linear Channel

An important application of signal processing is that of equalisation, which consists in compensating for the distortion undergone by a signal in its path between a transmitter and a receiver. In the past years there have been important advances in the field of equalisation that have brought for instance the wide development of mobile telephony. However, many equalisation systems are relatively basic. By improving the equalisation techniques mobile telephony operators could gain an increased capacity (number of telephones per cell) and call quality. The difficult problems of nonlinear channels are developing new algorithms for a class of non linear communication channels. 
Practical power amplifiers introduce nonlinear distortion in the amplitude and the phase of the transmitted signal. This model formulates the amplitude and phase distortion due to a nonlinear amplifier in the transmitter, using two simple two-parameter formulas. Input signal to the nonlinear channel can be written as
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(2.1)

Here, wc is the carrier frequency, a(t) is the modulated amplitude, and φ(t) is the modulated phase. The amplitude and phase distortion are functions of the amplitude of the input signal, which are denoted by [a(t)] and [Φ(t)] respectively. The output signal after the nonlinear channel is given by 
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(2.2)

The model describes the distortions A[a(t)] and Φ[a(t)] by the following functions
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A communication system employing 16-QAM has a rectangular constellation. The transmission signal s(t) for a general M-QAM is given by, in a complex baseband representation
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(2.5)

Here nth symbol interval is given by the amplitude and phase an and θn, T is the symbol interval, and p(t) is the pulse waveform with duration T. The data symbol can alternatively be represented by its real and imaginary parts, which can take one of m = log2,M values ±1, ±3… ±(m-1).The constellation for the 16-QAM is shown below. Bit assignments are chosen as the gray coding so that neighboring symbols differ only in one bit position. Each symbol corresponds to four data bits.
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Figure 2.1  16-QAM Constellation with Gray Coding
The received signal, in complex base band representation, is composed of the signal distorted by the nonlinear channel and a complex Gaussian noise with uncorrelated real and imaginary parts.
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(2.6)

The goal of the equalizer is to estimate the transmitted symbol from the received signal.

2.3 Intersymbol Interference 

Consider what happens when pulsed information is transmitted over an analog channel such as a phone line or airwaves. Even though the original signal is a discrete time sequence (or a reasonable approximation), the received signal is a continuous time signal. Heuristically, one can consider that the channel acts as an analog low-pass filter, thereby spreading or smearing the shape of the impulse train into a continuous signal whose peaks relate to the amplitudes of the original pulses. Mathematically, the operation can be described as a convolution of the pulse sequence by a continuous time channel response. The operation starts with the convolution integral:
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where r(t) is the received signal, h(t) is the channel impulse response, and x(t) is the input signal. The second half of the equation above is a result of the fact that convolution is a commutative operation. 

Component x(t) is the input pulse train, which consists of periodically transmitted impulses of varying amplitudes. Therefore,
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where T represents the symbol period. This means that the only significant values of the variable of integration in the above integral are those for which t = kT. Any other value of t amounts to multiplication by 0. Therefore r(t) can be written as
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This representation of r(t) more closely resembles the convolution sum familiar to DSP engineers, however, that it still describes a continuous time system. It shows that the received signal consists of the sum of many scaled and shifted continuous time system impulse responses. The impulse responses are scaled by the amplitudes of the transmitted pulses of x(t). 

In the equation above, the first term is the component of r(t) due to the Nth symbol. It is multiplied by the center tap of the channel-impulse response. The other product terms in the summation are intersymbol interference (ISI) terms. The input pulses in the neighborhood of the Nth symbol are scaled by the appropriate samples in the tails of the channel-impulse response.
2.4 Equalizer Design
An equalizer is an input estimator. Since we are interested in making correct decisions, it is natural to choose an input estimator that minimizes the probability of making an error, i.e. d’(t) ≠ d(t). Such an estimator is optimal under the so-called MAP-criterion (MAP=Maximum A posteriori Probability). If all values in the symbol alphabet are equally probable, this criterion is equivalent to the more familiar ML-criterion (ML=Maximum Likelihood). If the noise is white and gaussian, this optimal estimator computes the quantity
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for all possible input sequences 
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 and chooses the sequence which results in the smallest J. Since the estimator makes decisions concerning a sequence of symbols rather than a single symbol, this detection scheme is called MLSE, Maximum Likelihood Sequence Estimation. 

The MLSE can be relatively efficiently implemented using the so-called Viterbi algorithm, which also enables symbol-by-symbol detection. Still, the complexity of the detection algorithm increases exponentially with the length of the channel impulse response.

Due to the complexity of the optimal algorithm, suboptimal schemes based on linear filters can be used. An outline of such an approach is depicted in Figure 2.2. The filters produce an estimate d’’(t) of the transmitted symbol d(t). This estimate is fed into a decision device to obtain a detected symbol d’(t). The decision device selects the symbol which is closest, in Euclidean distance, to the estimate d’’(t). For example, if d(t) takes the possible values ±1, the decision device would simply be d’(t)=sgn(d’’(t)), where sgn() is the sign function. Our goal is still to minimize the probability of making an erroneous decision, i.e. d’(t) ≠ d(t). To achieve this goal, we choose filters which minimize the mean square error of the estimate d’’(t), i.e. minimize E[|d(t)-d’’(t)|2].
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Figure 2.2 The structure of an equalizer. 
2.4.1 The Linear Transversal Equalizer

The aim of a linear equalizer is to estimate d(t) from (delayed) noisy measurements 

d’’(t)=Ct(q-1)y(t)




       (2.7)

Let a time-variant channel model of Equation (2.1) be expressed in transfer function form
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where 
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Substitution of y(t) from (2.3) into (2.2) yields
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The estimation error is now given by
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We observe that the estimation error consists of two terms, one term originating from the inter-symbol interference and the other from the noise. Ideally, if Ht(q-1) is stably invertible, and there is no noise present, Ct(q-1)=1/Ht(q-1) would make the error zero. There is however no guarantee whatsoever that Ht(q-1) has all its zeroes inside the unit circle.

The traditional way of dealing with this problem is to use an FIR, or transversal, equalizer:
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Notice that this is a non-causal filter, i.e. the output at time t depends not only on present and past inputs, but also on future ones. The non-causality is not a serious problem, since we in practice can introduce a sufficiently long delay in the estimator to make it causal. This means of course that the estimator instead can be written
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    (2.9)
This is causal. The estimator above introduces an unwanted delay of L samples into the detection process. To estimate d(t) without this delay would however be hazardous, since only one of the available measurements (y(t)) contains any information about d(t). If 
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 is small, this measurement could easily be destroyed by noise. The probability of correctly detecting d(t) then diminishes. If more measurements (y (t+j), j=1,…, m) are used in the detection process, the noise has to distort many measurements to cause an error. In general, the probability of error is reduced as the decision delay (or smoothing lag) L increases. Increasing L however means increased complexity, so the choice of filter size is a trade-off between complexity and performance. The coefficients of Ct(q,q-1) are determined to minimize the mean square error.
The minimum MSE solution corresponds to solving a set of 2L+1 linear equations, the so-called Wiener-Hopf equations.

The length of the linear transversal equalizer must often be chosen rather large if good performance is to be obtained.

2.4.2 The Transversal Decision Feedback Equalizer (DFE)

A better equalizer is the decision feedback equalizer. It uses past decisions d’(t) in the estimation, to remove interference from symbols which have already been detected. A transversal DFE with a finite smoothing lag (or decision delay) mf has the structure 
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where
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The smoothing lag is a design parameter, i.e. it is chosen by the system designer. As for the linear equalizer, the choice of smoothing lag is a trade-off between complexity and performance. Usually, St(q-1) and Rt(q-1) are referred to as the forward filter and the feedback filter, respectively.

The structure of the DFE is depicted in Figure 2.3.
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Figure 2.3 The Structure Of a Decision Feedback Equalizer. 
We note from above that the order of the feedback filter is determined by the length of the channel impulse response. The order of the forward filter equals the smoothing lag. Thus, the transversal DFE is described by the following coefficient vector
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Let us illustrate the basic idea behind the DFE. The most obvious way to utilize past decisions would be to rearrange Equation (2.1), substitute detected data d’(t) for d(t) and then divide by 
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 to obtain an estimate
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(2.11)

This estimator corresponds to setting mf=0 and choosing S(and 
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 Now, substitution of y(t) from Equation (2.1) into Equation  (2.6) yields
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If the past decisions 
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were correct, the estimate becomes 
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Clearly, this estimator removes all the inter-symbol interference caused by the previously transmitted symbols d(t-1),…,d(t-m). In the noise-free case, we thus have d’’(t)=d(t). However, if 
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 is small, the noise will be severely amplified. Again, reduction of the inter-symbol interference must be balanced against noise amplification.

2.4.3 Neural Decision Feedback Equalizer

Neural Networks (NNs) can be successfully applied to the adaptive equalization of digital communication channels. NNs are able to yield significant Performance when little information is available on the channel model. This fact can be explained by the very general assumptions made on the mapping from the received signal to the output symbol space that recast the demodulation problem as a classification task.

The proposed neural network (depicted in figure 2.4) is an evolution of the classical DFE and is considerably simpler and faster than existing structures, being composed of a two-layer perceptron. This architecture can be viewed as a NN with an external feedback. Samples contained in both the input and the feedback tapped delay lines (TDLs) constitute the inputs to the first neuron layer. During the learning phase, the feedback TDL is fed by an internal replica of the transmitted preamble sequence. Then the switch commutes from position 1 to position 2 and the equalizer enters into the decision directed mode (DDE).
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Figure 2.4 Neural Decision Feedback Equalizer

The weight updating is made by the Block Recursive Least Squares (BRLS) algorithm.  This approach searches consistently for a local minimum of the error functional in a Newton-like fashion, thus allowing for a super linear convergence rate. The choice of the cost functional should be related to the concept of equalization as a classification problem, where the objective is the separation of clusters generated by mapping the transmitted symbols through the channel input-output relationship.

2.4.5 Adaptive Equalization Structures

An adaptive algorithm to adjust the filter coefficients in order to minimize the difference between our desired response (d(t) or d'(t)) and the output of the DFE (d’’(t)).

In the indirect scheme we use adaptive modeling to estimate the impulse response of the channel. We thus adjust our adaptive filter so that its output matches the output of the channel when it is driven by d(t) or d’(t). We then design a DFE using the estimated channel impulse response.

The estimates produced by the equalizers can be obtained as an inner product of two vectors
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 is a vector of time-dependent equalizer parameters and
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 a vector of regresses.

For the linear equalizer above we have that
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and for the decision feedback equalizer we obtain, in decision-directed mode,


[image: image35.wmf]01

()(()....()'(1)....'())

(........)

T

eqf

tttttT

eqmfm

tytmytdtdtm

SSrr

j

q

=+----

=


To obtain detected symbols d’(t), the estimates d’’(t) are fed into the decision device. Before we proceed to describe the two adaptive equalization approaches, let us make some notes about the time-varying estimation problem.

The goal in the estimation (tracking) of a time-varying system is to determine a sequence of parameter estimates, 
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, such that the cumulative squared prediction errors are minimized,
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In order to minimize this criterion, parameters of time-varying systems are often estimated by recursive algorithms having the structure
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(2.12)
The choice of gain vector sequence {K(t)} differs in different algorithms. We note from Equation (2.5) that K(t) cannot tend to zero, and still retain tracking capability. For the particular case of a linear regression model we choose to express the gain as
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where P(t) is a positive definite matrix. It should be mentioned that there exist other algorithm structures, which are more suitable in some cases.

2.4.6 Direct Adaptation of the Equalizer Parameters

The traditional and the most straightforward way of adapting the coefficients in an equalizer, is to update the equalizer coefficient estimates, 
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 directly from data. The adjustment of the coefficients is based on recursive minimization of a function of the input prediction error. In training mode, this error is given by
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while in decision-directed mode, detected symbols are used as substitutes for the unknown transmitted symbols so that εd (t)=d’(t)-d’’(t). Thus, at each time instant, the equalizer parameters are updated by a recursive algorithm
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This is also known as inverse adaptive modeling, since we are trying to model the inverse of the channel.

2.4.7 Indirect Adaptation of the Equalizer Parameters

Indirect adaptation is based on adaptive modeling of the channel coefficient vector
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Using the updated channel parameters the equalizer parameters are calculated occasionally, possibly at every sample, by performing a mapping 
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. The estimation is based on recursive minimization of a function of the output prediction error
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When the noise v(t) in Equation (2.1) is white, the one step prediction is simply
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Where 
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 is the channel regression vector. In decision-directed mode, we are forced to use detected symbols 
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to replace the unknown transmitted symbols.

Thus, in this approach we first estimate the impulse response and then calculate the equalizer parameters:
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Here we substitute estimates 
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 for the true channel coefficients. For the decision feedback equalizer, we have to solve possibly at each time instant:
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The indirect approach is illustrated in Figure 2.2. In contrast to the direct approach, this approach requires the noise power E{v2(t)} to be estimated.
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Figure 2.5 The Structure of an Indirect Adaptive Equalizer.

2.5 Structure of Channel Equalization

Suppose we want to design the binary PAM system shown in Figure 2.6 to transmit data at a rate of 1/T bits/s. The sample rate is the same as the bit rate, and the bits an are assumed to be independent and equally likely ±1. 
[image: image82.wmf]'

t

ch

q


Figure 2.6 Data transmission over a no ideal band limited linear AWGN channel. The blocks inside the dotted rectangle are modeled by the MATLAB function 

The transmit filter gT(t), receiver filter gR(t), and channel impulse response c(t) are defined in Figure 2.6. This is an example of a no ideal channel because its frequency response C(f ) does not have a constant magnitude and linear phase, unlike the two cases dis​cussed earlier. When dealing with no ideal channels, it is convenient to develop an equivalent discrete-time model for the continuous-time system. Since that the matched ﬁlter is sampled with the symbol rate, we can represent the continuous-time parts of the system in Figure 2.7 with the discrete-time ﬁnite impulse response (FIR) ﬁlter in Figure 2.8.
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Figure 2.7 Filter Pulse Shapes and Channel Impulse Response.

In fact, it is not difficult to show that
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where 
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Clearly, the system will suffer from ISI if xn ( 0 for more than one value of n.
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Figure 2.8 FIR Equalizer with 2L+1 Taps and Detection Delay d
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A block diagram of a linear (2L + 1)-tap FIR equalizer is found in Figure 2.8. Since we are interested in a causal implementation. To be precise, the filter output is formed as 2L and this processed to produce the decision on the (n−d)th symbol. The quantity d is called the detection delay.
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We can also form zn as 
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Where
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Since the desired value of zn is an-d, we can find the coefficients to the MMSE equalizer as
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(2.13)

The correlation matrix is determined by the autocorrelation function for yn, i.e., Ry[k]= E[yn yn+k], as 
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and the crosscorrelation vector is determined by the crosscorrelation function between yn and an, i.e., Rya[k]= E[yn an+k], as 
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Clearly, to design the linear MMSE equalizer we need to know Ry[k]and ya[k]. However, these quantities depends on xn and the statistics of the noise component vn, which are usually unknown in practice, and we are forced to estimate Ry[k]and Rya[k]. 

Given the observation yn for n=0,1,...,N −1, we can estimate the auto-correlation function as 
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If we, before the data transmission starts, transmit a known symbol sequence an for n = 0,1,...,N −1, we can estimate the cross correlation function as 
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2.6 DSP-Equalizer and Interferences

DSP-equalizer systems have become ubiquitous in many diverse applications including voice, data, and video communications via various transmission media. Typical applications range from acoustic echo cancellers for full-duplex speakerphones to video deghosting systems for terrestrial television broadcasts to signal conditioners for wire line modems and wireless telephony.  The effect of an equalization system is to compensate for transmission-channel impairments such as frequency-dependent phase and amplitude distortion. Besides correcting for channel frequency-response anomalies, the equalizer can cancel the effects of multipath signal components, which can manifest themselves in the form of voice echoes, video ghosts or Rayleigh fading conditions in mobile communications channels. Equalizers specifically designed for multipath correction are often termed echo-cancellers or deghosters. They may require significantly longer filter spans than simple spectral equalizers, but the principles of operation are essentially the same. 

Today is the area of digital cellular communications, which has seen wide use of fixed-point DSPs such as the TMS320C5x. This family of processors provides the processing power to perform the requisite adaptive equalization while at the same time handling such tasks as channel coding, error correction, and vocoding functions (VSELP), thus providing a highly integrated and yet flexible solution to base band processing. 
2.7 FIR Filters  
The N tap FIR filter consists of (N-1) delayers, N multipliers, each with its corresponding weight, and N-1 adders (or a global adder) see Figure 2.9:
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Figure 2.9 The FIR Filter

The values of these weights determine the frequency response of the filter. Algebraically, the expression for the output is:
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(2.14)

This equation can also be expressed in vectorial notation with Xk  and W as vectors.


[image: image67.wmf]T

kk

yWX

=







(2.15)

FIR stands for Finite Impulse Response as the impulse response of the filter is as the name suggests finite in duration. The filter has duration of N, where N is the number of taps of the filter, and the weights are the values of the N samples of the impulse response.

The LMS algorithm is an approximation of the Steepest Descent Method using an estimator of the gradient instead of the actual value of the gradient. This considerably reduces the number of calculations to be performed and this allows the LMS algorithm to be implemented in real time applications.

2.8 The Transmission Model

Consider the received sampled data sequence 
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 generated by transmission of one data burst, 
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 over a time-variant and time-dispersive channel. By regarding the entire channel from the symbol sequence d(t) to the sampled measurements y(t) as a discrete-time system, it is possible to model the channel as 
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            (2.16)

where 
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 is the complex-valued, time-varying impulse response of the equivalent discrete-time channel. v(t) is measurement noise of zero mean, which is assumed to be independent of the symbol stream. We also make the assumption that the input stream is white, i.e.  
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Now, if the input d(t) is to be recovered from y(t), it is evident from the right hand side of Equation (2.16) that the middle term, the inter-symbol interference, and the noise v(t) distorts the detection of d(t) from y(t). To extract the symbols, we use an equalizer. The design of the equalizer obviously depends on the impulse response of the channel. Since this is not only unknown, but also time-variant, an adaptive equalizer has to be used. 

The problem of designing an equalizer is complicated by the fact that the possible regressors {d(t)} are unknown as well. We cannot use adaptive modeling directly, since we do not know the input to the adaptive filter. Also, we cannot directly use inverse adaptive modeling since we do not know the desired signal.

To cope with this problem, we first transmit a known (training) sequence. It helps the filter to adapt to the channel characteristics. This part we call system initialization. When the filter is adapted (we consider the filter adapted when the eye diagram is open on 50%), further adaptation can occur in the decision phase, as shown in Figure 2.10
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          Figure 2.10 System Adaptation

It is thus natural to partition the adaptation procedure into two modes:

1. Learning-directed mode, 
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 Training sequence Detected symbols, 
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is utilized to initialize equalizer parameters.

2. Decision-directed mode, 
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: Detected symbols, 
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 are used as substitutes for 
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The adaptation of the filter parameters is then based on detected data. 

The adaptive equalization problem is depicted in Figure 2.11. An inherent difficulty is that adaptation has to be based on detected data, {d’(t)}. If incorrect decisions are made and subsequently used in the adaptation, there is a potential risk of losing tracking ability. If the tracking is lost, too many errors will occur, which in turn will make the equalizer useless. However, since a bus system is supposed to operate under such conditions that almost all decisions are correct and an error check is introduced, this is not a serious problem.
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Figure 2.11 A transmitted sequence of data {d(t)}, propagating through a time-variant

channel, yields a received sampled sequence {y(t)}. 
2.9 Structure of Neural Equalization System

In Figure 2.12 a typical transmission system is depicted. s(k) is the transmitted symbol stream, n(k) is the additive noise, Gaussian distributed. The  channel may be non-linear, but the input-output symbol sequence map is assumed to be unambiguous. In modern interference-limited cellular telephony systems, the main error source is the Inter-Symbol
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Figure 2.12 Structure of Neural Equalization System
Interference (ISI), rather than the thermal noise. The ISI consists in the spreading of symbol information through subsequent signal samples, and is the main problem in the relatively high SNR, typical of most existing transmission systems.

The purpose of the equalizer is to estimate s(k), minimizing the combined effects of ISI and noise. In particular, the neural equalization system makes use of a set of delayed input samples and past detected symbols.

Neural Networks (NNs) can be successfully applied to the adaptive equalization of digital communication channels. NNs are able to yield significant Performance when little information is available on the channel model. This fact can be explained by the very general assumptions made on the mapping from the received signal to the output symbol space that recast the demodulation problem as a classification task.

The proposed neural network is considerably simpler and faster than existing structures, being composed of a two-layer perception. This architecture can be viewed as a NN. Samples contained in both the input and tapped delay lines (DLs) constitute the inputs to the first neuron layer. During the learning phase, DL is fed by an internal replica of the transmitted preamble sequence.
The weight updating is made by the Block Recursive Least Squares (BRLS) algorithm .This approach searches consistently for a local minimum of the error functional in a Newton-like fashion, thus allowing for a super linear convergence rate. The choice of the cost functional should be related to the concept of equalization as a classification problem, where the objective is the separation of clusters generated by mapping the transmitted symbols through the channel input-output relationship

2.10 Summary

In this chapter equalizer design for linear and non-linear channel were described. Specifically, the linear transversal equalizer, the transversal decision feedback equalizer (DFE), adaptive equalization structures, direct adaptation of the equalizer parameters, indirect adaptation of the equalizer parameters, channel equalization, DSP-Equalizer and interferences, inter-symbol interference and the structure of adaptive equalization system using NN has been described. 
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